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The effects of second-order terms on the velocity and temperature

- Jumps at a wall are obtalned by a physical derivation. The analysis uses

the concepts of effective mean free paths for momentum and energy transfer;
the effective mean free paths are obtained from known viscoslties and
thermal conductivities. The second-order slip flow analysis 1s epplicable
at somewhat lower pressures than is the first-order analysis and applies
to nonmonatomic as well as to monatomic gases. Several illustrative ex-
amples, including fully developed flow and heat transfer in a tube are
considered. Differences between the first- and second-order corrections
on the order of 20 percent were noted in the regilon for which the analysis

appears applicable.

NOMENCLATURE
A area (fig. 1)
a accommodation coefficient (eq. (40))
°p specific heat at constent pressure
Cy specific heat at constant volume
E energy crossing dA per unit area per unit time from a given
direction
ET total ener%x\crossing dA-per unit-ares per unit time from sbove
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total energy crossing dA per unit area per unit time from below
fraction of molecules reflected diffusely (eq. (19))

Maxwellian distribution function for molecular speeds (eq. (6))
internal energy per unit mass other than translational energy
thermal conductivity

molecular free path

effective free path for internal energy transfer

effective free path for momentum transfer

-effective free path for trenslastional energy transfer

hard-sphere free path

x=-component of momentum crossing dA° per unit time per unit ares
from a given direction

total x-momentum crossing dA per unit area per unit time from
above

total x-momentum crossing dA per unit area per unit time from
below

molecular mass

Nusselt number, 2q4ro/(T, - Tp)k

continuum Nusselt nunmber

number density

Prandtl number, cpp/k

pressure

actual pressure drop

pressure drop for continuum flow at velocity at which actual pres-

sure drop is Ap



q heat transfer per unit area per unit time

R gas constant

r tube radius

T temperature

U, x-component of mean velocity

Uy x~component of molecular velocity

v mogecular speed

Vy portion of x-velocity compchent that is random (eq. (3))

X,¥,z coordinates (fig. 1)

a thermal diffusivity,

T Cp/cv

] spherical coordinate (fig. 1)
K Boltzman's constant

K viscosity

o) density

T shear stress

V) spherical coordinate (fig. 1)
Q defined by equation (14)

w angular velocity of dA
Subscripts:

b bulk

i referring to internal energy other than translational
m monsatomic

r reflected

t referring to translational energy



v in veloclty renge dv at velocity v

W wall

0 referring to point xq5, ¥os; 2Zo (fig. 1) or to gas. at wall
1,2 referring to planes 1 and 2

Superscript:

- mean velue
INTRODUCTION

Slip and temperature=-jump boundary conditlions have been used with
considerable success In the anelysls of slightly rarefied geses rl]. In
this method of esnalysis, the continuum equations of momentum and energy
are used throughout the gas, and the effects of the wells are teken into
account by using appropriete boundery conditions. For a rarefled gas with
velocity and temperature gredilents, the veloclty and temperature -of the
gas next to the wall will differ from those of the wall. The gas next to
the wall is made up of molecules coming from the wall and from a distance
a mean free path awey from the wall, so that itsxVE1ocity and tenperature
will be between those of the wall and of the gas a mean free path away.

If the mean free path is small, the velocity and temperature jumps will
be negligible.

In the usual analysis, the velocity and temperature jumps at the wall
are assumed to be proportional to the normal veloclty and temperature
gradients. That 1s a good assumption if the velocity and temperature pro-
files are essentially uniform over a mean free path, as they will be if
the gas is but slightly rarefied. At somewhat lower pressures, however,

where the profiles may be nonlinear over a mean free path, the jumps at



the wall would be expected to be functions of the higher order normal
and tangential derivatives.

Second-order Jump boundary conditions have been obtained in reference [2]
by using Burnett's approximate solution of the Boltzmen equation. Burnett's
equations, however, have been found to give results that are not in agree-
ment with experiment [1]; in fact, in many cases the Navier-Stokes equa-
tions were found to be superior. Thus, attempting to obtain second-order
Jjump boundary conditions by using a comparatively simple physical derivationl
appears to be worthwhile. The Boltzman equation will not be used herein, but
the momentum and energy carried across an area element by molecules that,
in effect, had their last collision a distance equal to an effective mean
free path from the element will be considered. The effective mean free
path, which has different values for momentum and heat transfer and which
also differs from the usual hard-sphere mean freé path, is then related
to experimental viscosities and thermal conductivities. The results differ
somewhat from those of reference [2].

The expressions for the velocity Jjump at a wall will be derived in
the next section, after which the corresponding temperature jump will be
considered. The results, which use Eucken's approximation [4], are appli-
cable to both monatomic and nonmonstomic gases., Interactions between the
vqlocity and temperature fields, such as thermal creep, are neglected.

MOMENTUM TRANSFER

Consider the x-component. of momentum carried by molecules across an

1A related analysis for thermal radiation in gases was recently carried
out by the authpr [3].
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area element dA located at Xgs Yos 2o- The plane of dA is normsl
to the z-axis (fig. 1). If all the particles were traveling in a direc-
tion meking an angle 6 with the z-axis and a polar angle ¢, the
number of particles in the velocity range between v and v + dv +that
pass though dA per second would be ngfg dv v cos 6 dA. The quantity
ny 1s the number density of particles at Xns Yos Zgs and fy 1s the
corresponding velocity distribution function. For an isotropic gas,
the fraction of particles with velocfties that meke an angle between o
and 0O + 46 with the z-axis and a polar angle between ¢ and ¢ + do
is sin 6 d6 dp/4x. Thus, the actual number of particles in the velocity
range dv +that pass through JdA per unit time &t an angle with the
z-axis between 6 and 6 + d6 and a polar angle between ¢ and ¢ + do
is
dZy = ngfo dv v cos 6 dA sin 6 49 dp/4x

In the analysis, assume first, that the mean velocity of the stream
is uniform and in the x-direction. (The effect of velocity gradients will
be considered subsequently.) Then the x-momentum carried across dA
by molecules that are in the velocity range dv and move at an angle to
the z-axls between 6 and 6 + d6 and at a polar angle between ¢ and
¢ + do ié

My = muy ongfo dv v cos 6 dA sin 6 40 dg/dx (2)

where m 1s the molecular mass and ux,O is the x-component of the
velocity in the range dve.

Let

uy,0 = Ux,0 * Yx,0 (3)
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where UX,O is the mean x~-component of velocity at O, and Vx,0 is
the portion of the x-component of velocity that is random. The random
portion will have a Masxwellian velocity distribution. By use of

equation (3), equation (2) can be integrated over all velocities to glve

[2o]
aM, = dA(sin 6 cos 6 a6 dq)/4:r)‘/0\ mu'x,OnOfO av

= dA(sin 6 cos 6 d6 dgp/4w) m,,

. 0 00
X <Ux,0 f vfy dv + sin 6 cos @ f vzfo dv) (4)
0]

0

where vy 1s written in spherical coordinates as

Vy =V sin 6 cos @ (5)
and
1/2 3/2 - mv
o= (2 L Y7552 expl—l (8)
0 i KTq KTO

Equation (8) gives, of course, the Maxwellian distribution function for
molecular speeds.
Equation (4) becomes
am, = [d.A(sin 6 cos 6 A6 dcp/41r)now—fo](mUX’o + '537 miv, sin 8 cos cp) (7)
The last term in this equation is obtalned by use of Vthe relation
2

=3 52
8

which can be obtained by using equation (6). Equation (7) glves the
x-momentum transferred per unit time across dA by molecules whose
velocities make an angle between 6 and 6 + d6 wilth the z-axis and a

polar angle between ¢ and ¢ + dp, if the gas is moving at uniform velocity-
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If equation (1) is integrated over all values of v, the
quantity in brackets in equation (7) is obtained. Thus the quantity
in brackets gives the number of molecules that cross dA from the
glven angle range per unit time, and the second quantity in parsnthesis
can be interpreted.as the effective x-momentum carried per molecule. If
the mass velocity is not uniform, the molecules will carry momentum that
differs from mly o + 3/8 mni¥y sin 6 cos ¢. Molecules that, in effect,
had their lest collision a distance Ze,m (effective mean free path for
inomen'bum transfer) from dA will carry x-momentum equsl to

mly g + 3/8 v, sin 6 cos 9. Thus, equation (7) becomes

1
p— 3 S ‘o
am, = [dA(sin 6 cos 6 46 dcp/4zr)novo](mUx’z + 5 mivy sin 6 cos cp) (8)
The mass veloclty Ux 7 at a point x,y,z (fig. 1) can be related to
3
conditions at Xqs Yor Zg by expanding Uy 1in a three-dimensional

Taylor serles gbout Xgs Yos 2o+ This expansion gives

0

0, - E&E (@) + - v (), + (x - x@(;%)JhUx

If the binomial theorem is applied twice to the factor in brackets,

/ o
(z - 20)" ¥y - y0)""B(x - x0)® 3"y,
U =
X, 1 (h - w)i(w = s)ls! 3z 3y7-5 3xB 5

(9)
Equation (9) can be written in spherical coordinates le,m 6, @ with
origin at dA by setting

X - Xy = Ze’m sin 6 cos @, ¥ - ¥g = Ze,m sin 6 sin @, z - zy = Ze,m cos 0



It should be emphasized that Ze,m. will, in general, be greater than
the distance to the actual point of the last collision because of the
persistence of velocities. That is, after a collision many of the mole-
cules tend to continue traveling in the direction they traveled before

collision. Equation (9) becomes, in spherical coordinates,

Z i E cosB-¥g sin¥o sin¥-S¢ cosSg BhUX
(h - w)l(w - s)ls! 3zB-W dy"-s Bxs>o

h=0 w=0 s=0

(10)

In equation (8), the term (5/8)ﬁMVZ sin 6 cos ¢ gives the contribu-
tion of the random molecular velocities to the momentum transfer. If
temperature gradients in the flow direction are assumed to be small, that
term will drop out when we integrate over direction to get the total
x-momentum passing through dA from above. If thermal gradients in
the flow direction are large, that term may produce thermal creep effects,
but those effects are neglected héere. Thus, for simplicity, the last
term in equation (8) will be omitted in the remainder of the
analysis

Substituting equation (10) in eguation (8) and averaging over all values

of Ze,m

o - mnovo Zh sin¥*lo cosh-+lg ginW=-5¢ cosSg
(h - w)¥(w - s)!s! de 4
h =0 w

X( oy, > 1)
11
dzh-w dy¥=8 xS o

give
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where the overbar on lel m Slenifies an averaged value. To calculate
7,2 m 1in terms of 7e,m: the disfribution function V¥ for molecular free
b4

paths must be known. Jeans [5] has shown that V¥ 1is given approximately

by

1 .
V== exp(— —l:)
cl cl

where c¢ 1s a constant on the order of one, which accounts for the fact

that 1 varies with velocity. Thus,

. w0 . —
b L i exp(— _1_.)&1 = hi(cT)B
cl 0 cl

This form is also assumed to apply to Ze,m’ Thus,

TR _..5h
7'e,m = h¥lg (12)

where the constant c has been asbsorbed in the value of 1 Ze,m

e,me
will later be related to known viscosities,) Substituting equation (12)
in (11) and integrating to obtain the total x-momentum passing through

dA from above results in

T 3™
+ mnovo ZeLmh ( x )
dMy = zzz (b - w)l(w - s)lsl \gzh-w 3y¥-5 3x8/0

h=0 w=0

n/2 Nex
% sin"tlg costt-¥wtlg sin¥=Sp dp ao
0 0

gbvo dA = b ut 5 Uy
T T16x ZZZQ hyw,8 Ze m Jzh-w JyW-8 Ox8 0 (13)

h=0 w=0 =0

where
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[l + (-l)W-S][l "*'~('.l),S]h!I‘(h-‘-‘é’ + 2)P(W . Z+ l)‘[‘.(i ;Hl)
(b - w)Hw - S)fs!P(ékg 4)

and m,, {5 replaced by the mass density o The symbol I' stands for

Q(h,w,s) =

(14)

the gamma function. In order to cbtain the x-momentum passing through dA
from below, we let 6 go from xn/2 to =, instead of from 0 to =x/2,

and &hange the sign of the result:

The shear stress acting on dA 1is the net x-momentum transferred per

unit ares through dA from above:

or

[ h w

- pOV h-w h >y
o T h=0 w=0 s=0 [l B } Anw S)le m (az h-w 3yW=-8 3xS J, (16)

Next the velocity slip at a tangentially moving wall that is immedi-
ately below, but not touching the area dA will be obtained. TIn order to
do this, instead of a wall, a uniform gas below dA moving at the veloelty

U, 1is first considered. FEquation (15) then yields for dMy

= OOdA

1
My = 167

0(0,0,0)U, =  pgVg 9A Uy (17)

Tf the term for h = O 1s extracted fromthe sumnmation in equation (13)

and equation (17) is subtracted from that equation, there results
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aff - amy -7 po;j)vdA(Uo - U)
dhy

= © h
PV QA
0°0 ~h X
* TTI6x z Z AB¥58)le,m (Bzh‘w oy"-8 axE’)o e

Consider next a wall moving at the veloclty Uy, rather than a uni-

form gas, to be below dA. Then the fraction of the momentum of the mole-
" ‘cules relative to the wall, which is, on the average, given up to the wall,

1s

F - 3—%—34":‘3 (19)
dMy - dMy
where dMy . 1is the momentum carried by reflected molecules. The momentum
difference in the denominator of equation (19) is for a wall with perfect
momentum sccommodation and is taken to be the same as that which occurs
when a uniform moving gas 1s below dA. The quantity F 1s sometimes
intifpreted as the fraction of molecules reflected diffusely, the rest
being:reflected specularly. The quantlity dM; - de,r: which is the net
x-momentum transferred through dA from sbove, is dA times the shear
stress, The shear stress is given by equation (16), since that equation
is assumed to apply throughout the gas; the effect of the wall 1s ac-
counted for by the Jjump boundary conditions. Setting 70 dA = dM§ - de,r
in equation (16), substituting that equation and equation (18) in (19),

and solving for UO - U, result in

0 h
haw >ty
_ 1 - F . <h e
Yom %t g E E §~ ]Q(h’w’s)ze’m (azh-w dy¥-8 axs)o
h=1 w=0 s=0

(20)
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If we retain only terms through second order (terms containing second

derivatives), equation (20) becomes

3U _2 [f32u 32U, d20,
2 (2 -F) = xy 1 x) L[ x x =
Up - Uy =3 '('Tl le,m ($>o "z Ze’m[( 22 )O T2 (Byz )0 "z (53(? )O]

(21)
Equation (16), correct to terms of second order, is
1 .~ Ol oUx
T =% pvie, ny; = HSz (22)

where the subscripts O have been dropped because the equation is assumed
applicable throughout the gas. Terms containing second derivatives are '
zero in equation (22). The Navier-Stokes equations can be derived from
equation (22) and are thus applicable in the present analysis where second-
order boundary conditions are used. It is significant that the Navier-
Stokes equations give better results for rarefied gases or for large ve-
locity gradients than certain other aspproximations, for instance, the
Burnett equations [1].

From equation (22),

o = 3m/(ov)

and, since p = p/RT for a perfect gas, and Vv = (SRT/n)l/2 (eq. (8)),

7 =3 .‘[.’_E}DCRT (23)
e,n 2 2 P

Thus, equation (21) becomes

(2 - F) p~/RT {9Ux 9 Uy

UO'UW=_\/§' F P (Bz) ﬂ(u-\/_)KBZZ)O

>y 1 [3%u

(ayzg)o + E-( ng);] (24)

1
+ =
2



- 14 -

Equation (24) is written in terms of measurable quantities. The first
term on the right side of equation (24) is the usual first-order slip
term [6] (p. 296), and the second term gives the second-order contribu-
tions. Equation (24) applies for a wall below the gas. For a wall sbove

the gas, a simller derivation glves.

i aU 2 BZUX
Uw'U0=_\,Fr = _lu-\I{_(az) %(w\éﬁ) [(Bz2 )o

0,4

Equations (22), (24), and (25) are the équations for second-order recti-

+._

linear slip flow according to the present method of analysis. They differ
somewhat from those of reference [2]. For instance, the numerical coeffi-
cient on GZUX/Bzz in equation (24) differs from that in reference [2],
and the second derivatives with respect to x and y are absent in the
corresponding expression in reference [2]. It appears, however, from the
present physical derivation that those derivatives should have an effect.
Equations (22), (24), and (25) were derived on the assumption that
the flow is rectilinear. If the fluid does not move in straight lines,
as for concentric rotating cylinders, the area element dA will rotate,
and the molecules crossing it will appear to have s different Uy than
they would have if the fluid were moving in straight lines. This effect
can be teken into account by replacing BUX/BZ in equations (22), (24),
and (25) by JU,/dz + w = dU,/dz + U, /dx, and JZU,/d28 by
BZUX/BZZ + dw/dz = BZUX/BZZ + GZUZ/BX oz, where  1is the angular velocity

of dA. Equation (22) then becomes
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T=u(§;§+w>=u@%+%> (22a)

which is the generalized expression for shear stress used for deriving

the Navier-Stokes equations. Similarly, equation (24) becomes

2
_ [z (2 - F) u+/RT|(9Vx _ 9% RT
Yo = Uy = -\E F ) [(Bz 0 T % 16 P_'XPC

3%y 3 1 %
[(azzx)o ' (5%) o (Byzx)o '

ENERGY TRANSFER

o=

d2U
(8x2x>o] (240)

The analysis of energy transfer 1s somewhat anslogous to that of
momentum transfer in the preceding section. Here, the energy carried by
molecules aeross an area element dA is considered. (See fig. 1.) The
number of particles dZV in the velocity range dv that pass through
dA per unit time snd meke an angle with the z-axis between 6 and
6 + 46 and a polar angle between ¢ and ¢ + 49 1is again given by
equation (1). First, the temperature of the gas is assumed to be uniform.
Then, the energy carried across dA by molecules that are in the velocity
range dv and move at an angle to the z-axis between 6 and o6 + 46
snd at a polar angle between ¢ and ¢ + dop is

dE, = (32'- me + m()“ofo dv v cos 6 dA sin 6 d6 do/(4x) (28)
where mI0 is the internal energy of the molecules (energy other than
translational). Integration of equation (26) over all molecular speeds

with I0 independent of molecular speed gives
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o0 00
dE = qa (&ln 8. cos © db ch)nO im f v3fy dv + ml, f Vi dv
4 2 0 0

gin 6 cos 6 46 d 1,3 - 27
= dA ( = Q)no[? m(v-)o + mvolé] (27)

Using equation (6) for f, glves the relation

(v3)y = £ M), (28)

so that

az - [an (2tn0.cos 626 k7o) (% (3)2P)o + =1o) (29)

As in momentum transfer, the quantity in the first bracket gives the

nunber of molecules that cross dA from the glven angle range per unit
time. The quantity (4/3)(1/2)m(;§)0 is the effective translationsl
energy, and mly 1s the internal energy carried by each molecule. The
factor 4/5 appears in the expression for the effective translational
energy because the molecules with large translational kinetic energy
cross dA in greater numbers than do the slower moving ones. Equa-
tion (29) applies to a gas at a uniform temperature. If the temperature
is not uniform, the molecules crossing dA will carry effective kinetic
energy equal to (4/5)(1/2)m(;5)1, where (1/2)m(;§)z is the average
kinetic energy of molecules a distance Ze,t from d4A and ze,t is the
effective 1 for translational energy transfer. Similarly, the molecules
will carry internal energy equal to mIZ, which is the average internsl
energy of molecules a distance Ze,i from dA. The quantity Ze,i is
the effective 1 for internal energy transfer and is not necessarily

equal to 1_ .. Thus, equation (29) becomes
J



- 17 -

aE = [d.A (Sin £ oo 048 d(P)novo][g (%)@(;5)1 + mIZ] (30)

Proceeding as for nmomentum transfer yields, in place of equation (10),

h
— Zth cosB=Yg sin¥e sin"-S¢ cosSop 3hv2
(v )Z = _ (h - w)l(w - 8)!s! Jzh-W dy¥-s axs)o
5=

(31)

and

;-\S“ e ; cos h-Wg 5in¥g sin¥~ SCP cos®p ( dhr
—~ - T - -
; (B - w)i(w - 5)is! 322V oy 8 axs)o

h=0 w‘-O s=0

(32)
Substituting equations (31) and (32) in equation (30) and averaging

over all values of Ze,t end Ze,i give

4 = [qa (sin_6 cos 6 de dcp)n :':O]m g -g 0s"¥g sin¥p sin""Sp cosSp
4z 0 e (h ~ w)l(w -~ s)ls!
=l W=

ah(%,;ﬁ) P ah
3B 2 + B 1 (33)
3 "e,t | yh-w dy¥-8 dx" o e,1 \yzh-v dy"8 3x8 ),

Substituting for -7,-2'-,1: and. Z:g,i from equation (12) (with 1

e,m

replaced by le. t O Ze i) and integrating to obtain the total energy
b4 bs

passing through dA from above give
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+ mn0Vn dA
" = ZZZ(II-W) (w - 8)ls!
hfl .2
4 ° (2 v ) i1
37 OBV Jy=8 xS 0zB=W 3y¥=B 3x8
x/2  \2xn
sin"+1lg cosh-Wrlg sin"=S¢ cosfop dp 46

h W
=-1—er Zz“hw’

S=

Bh(% ?) h
L [a ] + 70 e ) (34)
»3 e, tly,h-w dy¥-8 3x8J, e,i \yzh-v dy¥-8 3x5/4

where Q(h,w,s) is again given by equation (14). The change in total

thermal energy of a molecule is d[(l/z)mﬁ + mI] = mey 4T, where cy is
the specific heat at constant volume and T 'is the temperature., After
Eucken [4], c, 1s written as cy g + ¢y 3, 80 that 4(1/2 :r‘é) = cy ¢ QT
eand dI = cy 3 4T. If the variation of ¢y 4 with temperature for
derivatives of higher order than the first is neglected, equation (34)

then becomes

PAV h
+ O 0 4 =h =h a T
W T l6x z Z z Q(h’W’S)(g Ze:tcvit * Ze:icv’ i) Jzl=W JyW-8 xS

h=0 w=0 s=0

(35)
for the energy crossing dA from ebove., Similarly, the energy crossing

dA from below is (eq. (15))
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. 5g¥p dA
= T Ten ZZ 2 "l) Q(h:W: s)

dE
h
—~h =h QT
= 15 1¢ + 15 sc (36
(3 e,tv,t €,1 v)j) (azh-W dyv-8 axs>o )
The net energy or heat transferred‘ in the direction =z 1s
dE- - aE*
9y = da
or

o)
1&(0; ZZ - 5o (n,w,)

3Py
( _g tCv,t Tlel iCy )
3 ) azh-w dy¥w-s dx8 o

In order to obtain the effect of a wall on the heat transfer, we as-

- (37)

sume first, that there is & gas below dA at the uniform temperature Tw’

Equation (36) then yields, for dE’,

- 1 = 4
dE- = 7 POV0 G.A(-g Cv,t + cV,i)TW (38)
If the term for n = O 1s extracted from the summation in equation (35)

and equation (38) is subtracted from that equation,

+ -_1 = 4
dg' - daF = Z p0VO dA 3 Cv’.t + CV,:.L)(TO - TW’

po o % § § g b
l6‘J‘t h sW,y8 3 e ‘tcv,'b +- Ze i v,1 )(az h-w 6',}7' -5 axs)

h=1 w=0 &=0

(39)
If a wall at temperature T, rather than a uniform gas, is placed

below dA, the accommodation coefficlent a is defined by
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+
aE" - 4,

T E e (40)

where dE,. 1is the energy reflected from the wall. As in the case of F
(eq. (19)), the accommodation coefficient a 1s regarded as,a quantity
to be determined by free-molecule flow experiments, inasmuch as 1ts value
depends on meny varisbles and is difficult to predict [7]. But 4" - dE_,
the net energy transferred through dA in the z-direction,is -dA ‘times
the heat transfer per unit area and is given by equation (37). Setting
-q, dA = aEt - dE,. in equation (37), substituting thet equetion and eque-

tion (39) in equation (40), and solving for Ty - T, &lve

[ h w h
1 E § E 1 - (-1)%Y o g
To - Ty = 4= ( g Q(h,w,s)

h=1 w=0 s=0

4 =n <h
(3 Ze,tgvlt + Ze,icv,i')( B?T
7V 3yTE 3B

(41)

(11N

Cv,t * Cv,i

If only terms through second order are retained,

4
Po.p _2(2-8) (3 Te,t%v,t + Te,icv,i) T
0~ Ty =3 o

D) dz

Cv,t * Cy,1

3
1@‘ Tg,tcv,t“ﬁ,icv,i) S 1 [3%T 1 (3%
e dedey 4@ )

TS dz2 2 \ov2/o 2 \oxP
J

3 Cv,t
The heat transfer, correct through terms of second order, is given
by equation (37) as

1 =f[4 < - oT oT
9z = =3 OV (3 le,t%,t 7’e,:ch,i‘) 32 - %% (43)

or
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The subscripts O have again been dropped because equation (43) is as~-
sumed to apply throughout the gas. For a monatomic gas, equation (44) be~-

comes

4 - :
kp = g v Z’e,‘bcv,t (45)

But kp is related to p and °y,t by

5
ky =3 UCy,t (46)

[6]1(p. 178). From equations (45) and (46),

or

7 =£-\IEEA@ (47)

Following Eucken [4], it is assumed that internal energy is transferred

in the same way as momentum, so that, by equation (23),
- _ 3 = RT
Te 1 = 3 5 (48)

Eucken &lso assumed that c, 4 = (3/2)R, that is, that the transfer of
3

transletional energy is unaffected by the presence of internmal energy.

Since cy = cv,t + Cy,1 and ey = R/(T - 1),
3y -1 5 ~ 31
Cv,t = _(‘—2-_'1 Cy: Cy,i = 5 Cy (49)

Equations (44),(47), (48), and (49) give

1
k=7 (97 - 5) pey (50)
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which is Bucken's formula and has been found to give results for most
gases that are in good agreement with experiment [6](p. 180). Substitu-

tion of equattons (44), (47), (48), and (49) in equation (42) gives

2 - 8) RT [OT
To - T, = 7% L2 TR mé— (E)o

o (1777 - 145l(;5/— >2[(82T)

T256 r+1 ) 325

(g;g) % (622)0] (51)

for a wall below the gas., A similar derivetion gives

- (2 - a) Y ~/RT [T
Ty - To = ¥or = 755 (&)o

, 2 (a77y - 145) (m)z L 1@ ()] e
256 v+ 1 P azz 0 2 ayz o 2 sz o

for a wall above the gas. Equations (43), (51), and (52) are the second-

order equations for heat transfer in a rarefied gas according to the
present method of analysis. The application of these equations and those
4
in the preceding section to several problems will be given in the follow-
ing sections.
PLANE COUETTE FLOW AND HEAT TRANSFER

For plane couette flow with frictional heating neglected, the shear
stress and heat tfansfer are independent of the distance from a wall. Thus
equations (22) and (43) become

Uy - Up = 12/u (53)

and

T-Tl=-—l-(_ (54)
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Using velocity and temperature jumps at the two walls calculated from

equations (24), (25), and (51) to (54) yields

(Uy,2 = Uyydu V-1 un/RT

1L F PL

(55)

and

(Tyn = Tl 2 —a) _ 1 (&), (56)

q,L {r + 1)Pr \ pL

where L is the distence between the two walls 1 and 2, and F and a
have the same values for the two walls. The results in this case are the
same as those for the first-order analysis. This is, of course, because
the velocity and temperature profiles as given by equation (53) and (54)
are linear. The velocity results are in good agreement with experiment
(11(p. 721).
FULLY DEVELOPED FLOW AND HEAT
TRANSFER IN PASSAGES
For fully developed flow in a tube, the shear stress varies linearly

with distance from the centerline, so that equation (22) becomes

r dUy,
ro TO__LL dr
or
T
_ 0 2
Uy = Uy = - Zirg (r - ro) (57)

The derivatives in equation (25) can be calculated by setting :
r2 = 22 + ¥y2 in equation (25) and letting ¥ = O after differentiation.

Then the velocity of the gas at the wall is, with U, =0,



U_‘/Egz-mp-‘/ﬁf_ngzm /BT "o (58)
0=z T F P _ p @ 32 D uTo
The bulk or mixed mean veloclty for flow in a tube is
To
Ugr dr
0
Up = T
r dr
0
or, from equation (57),
1 To¥o
Up =Uo + T (59)
From equations (58) and (59),
T,r
W, - i frE 2 =
2 = F) {u/BT\ ., 27x {u+/RT
1+ 2+/2n 7 ( Pry )-+ S ( Pr,

A plot of equation (60) for F =1 1is given in fig. 2. The term on
the left side of equation (60) is the same as the ratio of the actual pres-
sure drop for the tube to that for continuum flow at the same velocity,
if the pressure drop is small compared to the absolute pressure and en-
trance effects are smell, These condit{ons are approximeted in the data
from reference [8] for hydregen flow through a copper tube, and those
data are included in fig. 2 for comparison. These data are also repre-
sentative of those for flow through glass tubes [8]. It is assumed that

F

"

1 for the data throughout the entire range of pressures, inasmuch as

F

i

1 in the free molecular region. (Processes that take place at the
surface should not be dependent on whether or not collisions occur in the

gas.) Also included is the curve for first-order slip flow obtained by
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neglecting the last term in the denominator of the right side of equa~
tion (60). The predicted curve for second-order slip flow appears to be
in considerebly better agreement with the date than does that for first-
order slip, although there is some scatter in the data. When un/ﬁﬁ/pro
is on the order of 0.2, for which the snslysis spplies reasonably well,
the differencéﬁbetween the first- and second-order equations is sabout
20 percent, For values of p1f§57§r0 grgater than those shown, the pre=-
dicted values begin to deviate considerebly from the dats, and a second-
order slip flow anelysis evidently 1s not appliceble.

if flow between parallel plates is considered rather than flow
through a tube, derivatives with respect to y are absent, and in place

of equation (60) is

ToZ :
crise = - (62)
Ho 1+ 5_‘/3 (2 - F) (p/RT\, 27x (p~/RT
2 F PzZg 16 pz
where 2z, 1s the half distance between the plates and

1 [¥o
Uy = ;8 U/1 U, dz
0

Consider next the Pully developed heat transfer in a tube with uniform
wall heat flux. First-order slip flow for this case has been considered in
reference [9]. If axisl conduction is neglected, the energy equation can

be written for fully developed flow as

T 10 oT
UX'&—;G'.I—‘B?(I'B?) (62)
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For uniform wall heat flux, OT/dx 1is independent of r, and with

the use of equation (57), equation (62) cen be integrated to give

U T
T - Ty = é@q@_[zq (r? - I‘B) - 5&(21‘0 (ré - 41%1'2 + Bré)] (63)

The derivatives in the expression for the temperasture jump st the wall
(eq. (52)) can be obtained by substituting r2 = 22 + y2 1n equation (63)

and letting y = 0 after differentiation. Equation (52) then becomes

) 2
T - Ty - BT@XEE 2 -8 ~/RT (Ugro . Tolﬁo)
04

r o
s a (r+1)Pr »p 2 ' 8u

256 T+ 1 D 2 0 16

L 9 (3777 - 145) (},.\/ﬁ?f)z(éu 1 "o%)] (64)

The bulk or mixed mesn tempersture for flow in a tube 1s

o

To>r dr

m o (65)

b
Yo
er ar
- | Y0

With the use of equations (57) and (63),

22
dor 2 1Ug 1 "0%% 11 Tol‘o>

X -2 -3 ~ 192
5% T IR 2 2
T
(i u. 4 L 1070
- F -0 §u
or
2 2
or _ 3fu_ 1Y+ 1 Uo
5% ‘o'o\Ioz "3 Tr. 222
0 oo
|

0
' 67
W 0 1 1 UpH ( )



- 27 -

Writing & heat belance on a cylindrical element of fluld of radius T
glves

oT 290

55 = r—()-';ﬁ';?p- (e8)
vhere q4 1s the heat trensfer per unit ares from the well to the gms.
Substituting equation (68) in (67) and using the definition for Nusselt

nunber, Nu = 2q0r0/k(T T,), and equation (59) for W, gives

T \2
i, 6e Tk 96 (Tot ) |
1 (Ty =To)k 48|07 IT 7grp ~ 1T \Tgro

l -+ 4 e
To*o

The first term on the right side of equation (69) is obtained from equa~-

tions (64), (68), and (59) as

Ty - Tplk 2-8). .y pyF
T2ty -\l-( - o8

(Y + 1)Pr bry,

Uau
1-]_2—-9.—-

9 (1771 - 145) To¥o (p,-[')

“TozZ T T F 1 Tor \ Prg (70)

l+4-——-——
To%o

and, from equation (58),

-_) u{" 27x (u RT)Z (71)

'roro 2 O 32 pro
From equations (71), (70), end (69), Nusselt number can be calculated
as a function of p~/RT/(pr,). The ratio Nu/Nu,, where Nu, = 48/11, is

plotted against u-/RT/(prg) in fig. 3. Curves are shown for 7 = l.4,

Pr =0.7, F=1, and for a =1 and 0.5. These values for 71 and Prandtl
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nunber correspond approximetely to sir and most diatomic gases. Included
for comparison sre curves for firgt-order slip flow and temperature jump.
Second~-order effects in this casé are somewhat less then those in fig. 2;
however, the dlfferences between the first~ and second-order equations are
sti11 on the order of 15 percent at & value of u=/RT/ (pry) of 0.2 and en
e of 1. The differences are less for smeller values of &.
SUMMARY OF RESULTS

The effects of second~order normal and tangentisl derivatives on the
velocity and tempersture Jumps at a wall in a rarefied gas were considered.
Use was mede of effective mean free paths for momentum and energy trans-
fer that differ from the actusl mean free peth because of factors such as
persistence of velocities, dependence of free path on velocity, ete., The
effective mean free paths were related to viscosities and other memsursble
guaentities. The mwse of the ususl Nevier-Stokes mpnd energy equations in
the gas was shown to be consistent with the use of second-order boundary
conditions since, according to the analysis, the second-order terms are
zero in the interior of the gas (eq. (22) and (43)). The velocity and
tempersture Jumps at the walls are given by equations (22), (24), (22a),
(24a), (51), and (52). The results agree with experiment at somewhat
lower densities than does the usual first-order analysis.
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Fig. 1. - Derivation of momentum and energy relations.
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Fig. 2. - Comparison of present analysis of fully developed second-order slip flow
in tubes with first-order analysis and experimental data. (Diffuse reflection at
wall.)
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